Displacement of aromatic nitro groups by anionic sulfur nucleophiles: reactivity of aryl disulfide \dagger and thiolate ions towards dinitrobenzenes in \mathbf{N}, \mathbf{N}-dimethylacetamide

Julie Robert, ${ }^{a}$ Meriem Anouti, ${ }^{a}$ Gérard Bosser, ${ }^{a}$ Jean-Luc Parrain ${ }^{b}$ and Jacky Paris ${ }^{*, a}$
${ }^{a}$ Laboratoire de Physicochimie des Interfaces et des Milieux Réactionnels, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
${ }^{\text {b }}$ Laboratoire de Synthese Organique (CNRS), Faculté des Sciences et Techniques, 2 rue de la Houssinière, 44072 Nantes, France

Abstract

Nucleophilic substitutions of 1,2 and 1,4-dinitrobenzenes ($o \mathrm{DNB}$ and $p \mathrm{DNB}$) by thiolates ArS^{-}(a) and aryl disulfide ions $\mathrm{ArS}_{2}{ }^{-}$(b) $[\mathrm{Ar}=4$-methylphenyl (1), 4-fluorophenyl (2)] have been studied in dilute solutions by spectroelectrochemistry in N, N-dimethylacetamide. Compounds $\mathbf{1 b}-\mathbf{2 b}$ are the predominant reactive species in $\mathrm{ArS}_{x}{ }^{-}(\bar{x}=2)$ solutions when sulfur is added to electrogenerated thiolates 1a-2a. In all cases the addition of dinitrobenzenes led to the fast displacement of one of the NO_{2} groups at room temperature. With thiolate ions, the stoichiometric formation of the expected unsymmetrical diaryl monosulfides $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SAr}$ was observed. Aryl disulfide ions reacted in two successive steps: (i) SNAr substitution affording $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Ar}$; (ii) displacement of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{x}^{-}$ions ($x=1,2$) by S-nucleophilic attack of the $\mathrm{S}-\mathrm{S}$ bond or a concurrent redox process. Reactions between 4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{x}{ }^{-}(\bar{x}=2)$ ions and o DNB or p DNB which were performed on the preparative scale confirmed the formation of mixtures of $\mathrm{Ar}_{2} \mathrm{~S}_{2}$ and $\mathrm{Ar}_{2} \mathrm{~S}_{3}$ symmetrical polysulfides.

In protic or dipolar aprotic solvents, nucleophilic displacement of a nitro group from nitro-activated aromatic compounds by thiolate ions has been described in several instances. ${ }^{1-9}$ With anionic sulfur nucleophiles, the enhanced mobility of NO_{2} with respect to fluorine, which is the best nucleofuge of the halogens, ${ }^{10}$ was attributed to its high polarizability favouring its departure in the presence of highly polarizable reagents. ${ }^{5.10}$ Substitutions (SNAr) leading to alkyl aryl sulfides, ArSR, by nitro displacement occur in rather mild conditions. ${ }^{7,10}$ However, the synthesis of unsymmetrical diaryl monosulfides has been more limited, requiring strong activation of aromatics by several electron-withdrawing groups, ${ }^{1.5}$ high reaction times at $25^{\circ} \mathrm{C},{ }^{4}$ or phase transfer catalysis. ${ }^{11}$ These species, with benzene rings bearing, respectively, electron-donating and -accepting groups, were investigated as being representative of organic crystals with non-linear optical properties. ${ }^{12}$ With regard to the preparation of unsymmetrical diaryl disulfides, only a few methods with low yields were reported, generally based on the reactions of sulfenyl reagents with arylthiolates. ${ }^{13-15}$ In a previous paper, ${ }^{16}$ we discussed the substitution of ortho- or para-dinitroaromatics by polysulfide ions $\mathrm{S}_{6}{ }^{2-}$ $\left(\rightleftharpoons \mathrm{S}_{3}{ }^{-}\right.$) in N, N-dimethylacetamide (DMA). The fast displacement of one of the NO_{2} groups at $20^{\circ} \mathrm{C}$ led to nitroaryl mono- and di-sulfide ions in equilibrium. 2-Nitrophenyl disulfide ions slowly reacted in turn with o-dinitrobenzene, producing bis(2-nitrophenyl) disulfide. Stable aryl disulfide ions, $\mathrm{ArS}_{2}{ }^{-}$, were obtained directly as main products from the reaction in DMA of sulfur on arylthiolates $\mathrm{ArS}^{-} .{ }^{17}$ One might expect that their substitution on dinitroaromatics would provide access to unsymmetrical nitrophenyl aryl disulfides.

We report here on the reactivities of ArS^{-}(a) and ArS_{2}^{-}(b) ions [$\mathrm{Ar}=4$-methylphenyl (1) and 4-fluorophenyl (2)] towards 1,4 - and 1,2 -dinitrobenzenes (p DNB and o DNB), studied in dilute solutions in DMA by UV-VIS absorption spectrophotometry coupled with classic voltammetry. The processes were
\dagger Aryl disulfide ion = aryldisulfanide.
confirmed at the preparative scale on the example $\mathrm{Ar}=4-$ methylphenyl.

Results and discussion

Generation and characteristics of ArS^{-}and $\mathrm{ArS}_{\boldsymbol{x}}{ }^{-}(\bar{x}=2)$ ions in DMA
Thiolate ions, ArS $^{-}(\mathbf{1 a}, 2 \mathbf{2 a})$, were generated in low concentrations ($\left[\mathrm{ArS}^{-}\right]_{0}<3.5 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$) by electrolysis at controlled potential on a gold electrode of thiols which are reduced according to the totally irreversible process (1) in the absence of hydrogen. ${ }^{18}$

$$
\begin{equation*}
\mathrm{ArSH}+\mathrm{e}^{-} \longrightarrow \mathrm{ArS}^{-}+\frac{1}{2} \mathrm{H}_{2} \tag{1}
\end{equation*}
$$

The electrochemical and spectrophotomeric characteristics of ArS^{-}and $\mathrm{Ar}_{2} \mathrm{~S}_{2}$ (c) species (Table 1) were determined from the evolutions of voltammograms and spectra during the electrooxidation of thiolate ions on their well defined oxidation wave [eqn. (2)].

$$
\begin{equation*}
2 \mathrm{ArS}^{-}-2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Ar}_{2} \mathrm{~S}_{2} \tag{2}
\end{equation*}
$$

We previously reported on the coloured 2-nitro- and 4-nitrophenyl disulfide ions in DMA stemming from the reaction (3) of sulfur on $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}$ions. ${ }^{19}$

$$
\begin{gather*}
\mathrm{ArS}^{-}+\frac{1}{8} \mathrm{~S}_{8} \rightleftharpoons \mathrm{ArS}_{2}^{-} \tag{3}\\
K_{1}=\left[\mathrm{ArS}_{2}^{-}\right]\left[\mathrm{ArS}^{-}\right]^{-1}\left[\mathrm{~S}_{8}\right]^{-1 / 8} \tag{4}\\
K_{1}\left(o \mathrm{NO}_{2}\right)=14.0\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{-1 / 8} \\
K_{1}\left(p \mathrm{NO}_{2}\right)=0.53\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{-1 / 8}
\end{gather*}
$$

These species [parameters in Table 1, constant $K_{1}\left(o \mathrm{NO}_{2}\right)$, $\left.K_{1}\left(p \mathrm{NO}_{2}\right)\right]$ will be involved in the reactions described below.
When arylthiolates like 1a and 2a lack an electron-

Table 1 Electrochemical and spectrophotometric characteristics of thiolate ions, disulfide ions and diaryl disulfides in N, N-dimethylacetamide. $E_{1 / 2}$ at a rotating gold-disc electrode vs. reference $\mathrm{Ag} / \mathrm{AgCl}, \mathrm{KCl}$ sat. in $\mathrm{DMA} / \mathrm{N}(\mathrm{Et})_{4} \mathrm{ClO}_{4} 0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$

Ar	ArS ${ }^{-}$			$\mathrm{ArS}_{2}{ }^{-}$			$\mathrm{Ar}_{2} \mathrm{~S}_{2}$		
	$\lambda_{\text {max }} / \mathrm{nm}$	$\begin{aligned} & \varepsilon_{\text {max }} / \mathrm{dm}^{3} \\ & \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} \end{aligned}$	$E_{1 / 2}(\mathrm{O}) / \mathrm{V}$	$\lambda_{\text {max }} / \mathrm{nm}$	$\begin{aligned} & \varepsilon_{\text {max }} / \mathrm{dm}^{3} \\ & \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} \end{aligned}$	$E_{1 / 2}(\mathrm{O}) / \mathrm{V}$	$\lambda_{\text {max }} / \mathrm{nm}$	$\begin{aligned} & \varepsilon_{\max } / \mathrm{dm}^{3} \\ & \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} \end{aligned}$	$E_{1 / 2}(\mathrm{R}) / \mathrm{V}$
$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	308	21200	$+0.10$	≈ 318	-	-0.10	260	6500	-1.25
$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	304	15600	+0.13	≈ 330	-	-0.08	260	5000	-1.20
2-NO $\mathrm{N}_{2} \mathrm{C}_{6} \mathrm{H}_{4}{ }^{\text {ab }}$	502	1860	$+0.55$	681	5200	$+0.05$	362	8500	-0.67
$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}{ }^{\text {a }}$	507	30000	$+0.67$	$600{ }^{\text {c }}$	11000	+0.27	322	21400	-0.62

${ }^{a}$ Values previously determined. ${ }^{17}{ }^{b}$ At $502 \mathrm{~nm}, \varepsilon\left(2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}{ }^{-}\right)=500$; this value was used for calculations of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-} / \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}{ }^{-}$ concentrations. ${ }^{\text {c }}$ Shoulder.

Table 2 Composition ($\mathrm{mol} \%$) of $\left[\mathrm{ArS}^{-}\right]_{0}+\left[\mathrm{S}_{8}\right]_{0}=\frac{1}{8}\left[\mathrm{ArS}^{-}\right]_{0}$ solutions calculated with $K_{1}(\mathrm{Ar})$ and $K_{2}(\mathrm{Ar})$ constants

Ar	$\mathrm{ArS}^{-}(\%)$	$\mathrm{ArS}_{2}{ }^{-}$(\%)	$\mathrm{ArS}_{3}{ }^{-}$(\%)
$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	19.1	61.8	19.1
$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	28.4	43.2	28.4

withdrawing group on the aromatic ring, $\mathrm{ArS}_{2}{ }^{-}$ions whose formation is more quantitative, react in turn with sulfur, affording $\mathrm{ArS}_{3}{ }^{-}$ions ${ }^{17}$ [eqn. (5)].

$$
\begin{gather*}
\mathrm{ArS}_{2}^{-}+\frac{1}{8} \mathrm{~S}_{8} \rightleftharpoons \mathrm{ArS}_{3}^{-} \tag{5}\\
K_{2}=\left[\mathrm{ArS}_{3}{ }^{-}\right]\left[\mathrm{ArS}_{2}^{-}\right]^{-1}\left[\mathrm{~S}_{8}\right]^{-1 / 8} \tag{6}
\end{gather*}
$$

$\mathrm{ArS}_{x}{ }^{-}$ions further oxidize into $\mathrm{Ar}_{2} \mathrm{~S}_{2}$ and $\mathrm{S}_{5}{ }^{-{ }^{-}}$ions ${ }^{17}$ which are detected by their absorption at 617 nm and their oxidation wave ($E_{1 / 2}=-0.20 \mathrm{~V} v$ s. ref.) [eqn. (7)].

$$
\begin{equation*}
2 \mathrm{ArS}_{3}^{-}+\frac{1}{4} \mathrm{~S}_{8} \longrightarrow \mathrm{Ar}_{2} \mathrm{~S}_{2}+2 \mathrm{~S}_{3}^{\cdot-} \tag{7}
\end{equation*}
$$

The values of the constants K_{1} and K_{2} are essential in order to know an accurate composition for the $\mathbf{1 b}$ and $2 b$ solutions noted $\mathrm{ArS}_{x}{ }^{-}(\bar{x}=2)$. They were obtained by addition of sulfur to coloured solutions of ArS^{-}ions in the presence of 2$\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}$ions ($\lambda_{\text {max }}=502 \mathrm{~nm}$), from the evolution of VIS spectra as shown in the example of Fig. $1\left(\mathrm{Ar}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)$. The competing formation of $\mathrm{ArS}_{2}{ }^{-}$and $\mathrm{ArS}_{3}{ }^{-}$ions with that of $o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}^{-}$species only ($\lambda_{\text {max }}=681 \mathrm{~nm}$) lead to equilibria (8) and (9).

$$
\begin{gather*}
\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}+\mathrm{ArS}_{2}^{-} \rightleftharpoons \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}^{-}+\mathrm{ArS}^{-} \tag{8}\\
\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}+\mathrm{ArS}_{3}^{-} \rightleftharpoons \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}^{-}+\mathrm{ArS}_{2}^{-} \tag{9}
\end{gather*}
$$

Constants $K_{1}(\mathrm{Ar})$ and $K_{2}(\mathrm{Ar})$ were calculated ($\pm 15 \%$) from conservation equations in ArS^{-}and $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}, K_{1}\left(o \mathrm{NO}_{2}\right)$ and experimental values of A_{681} giving $\left[\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}{ }^{-}\right]$at equilibrium.

$$
K_{1}(\mathrm{~F})=42\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{-1 / 8} ; K_{2}(\mathrm{~F})=4\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{-1 / 8}
$$

$$
K_{1}\left(\mathrm{CH}_{3}\right)=60\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{-1 / 8} ; K_{2}\left(\mathrm{CH}_{3}\right)=26\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{-1 / 8}
$$

The affinity of ArS^{-}and $\mathrm{ArS}_{2}{ }^{-}$ions for sulfur is analogous to that of a number of anions ($\mathrm{CN}^{-}, \mathrm{SO}_{3}{ }^{2-}$, etc.) ; this was termed ' S-nucleophilicity' or 'thiophilicity' by Karasch and Parker. ${ }^{20}$ The sequence $K_{1}\left(\mathrm{CH}_{3}\right)>K_{1}(\mathrm{~F})>K_{1}\left(o \mathrm{NO}_{2}\right)>$ $K_{1}\left(p \mathrm{NO}_{2}\right)$ is in agreement with the expected reactivities of the thiolate ions from the electronic effects as a function of the

Fig. 1 Evolution of VIS absorption spectra during the addition of sulfur to a solution $c_{0}=\left[\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}\right]_{0}+\left[o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}\right]_{0}=$ $2.45 \times 10^{-3}+1.63 \times 10^{-3} \mathrm{~mol} \mathrm{dm}{ }^{-3} .8\left[\mathrm{~S}_{8}\right] / c_{0}=0(1) ; 0.07$ (2); 0.18 (3); 0.29 (4); 0.39 (5); 0.50 (6); 0.60 (7); 0.74 (8); 0.88 (9); 1.0 (10). Thickness of the cell 0.1 cm .
nature of Ar. The ratios K_{1} / K_{2} imply a rather large disproportionation of $\mathrm{ArS}_{2}{ }^{-}$ions [eqn. (10)].

$$
\begin{equation*}
2 \mathrm{ArS}_{2}^{-} \rightleftharpoons+\mathrm{ArS}^{-}+\mathrm{ArS}_{3}^{-} \tag{10}
\end{equation*}
$$

The compositions ($\mathrm{mol} \%$) of the solutions $\left[\mathrm{ArS}^{-}\right]_{0}$ added with sulfur $\left[\mathrm{S}_{8}\right]_{0}=\frac{1}{8}\left[\mathrm{ArS}^{-}\right]_{0}$ are reported in Table 2.

Reactivity of arylthiolate ions with 1,2 - and
 \section*{1,4-dinitrobenzenes}

The reactions between o DNB and 1a, p DNB and 1a, 2a or benzenethiolate ions, $\mathrm{PhS}^{-}\left[\lambda_{\text {max }}=310 \mathrm{~nm}, \varepsilon_{\text {max }}=\right.$ $21800 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} ; E_{1 / 2}(\mathrm{O})=+0.16 \mathrm{~V} v \mathrm{~s}$. ref.], were fast and quantitative under our experimental conditions ($T=18$ $20^{\circ} \mathrm{C}$), according to eqn. (11).

$$
\begin{equation*}
\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{2}+\mathrm{ArS}^{-} \xrightarrow{k_{1}} \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SAr}+\mathrm{NO}_{2}^{-} \tag{11}
\end{equation*}
$$

As an example, Figs. 2 and 3 show the evolution of the UV-VIS spectra and voltammograms when a concentrated solution of p DNB was progressively added to a solution $\left[\mathrm{PhS}^{-}\right]_{0}=1.15 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$. The maximal absorbance, A_{310}, of PhS^{-}ions decreased while the band of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SPh}$ increased ($\lambda_{\text {max }}=340 \mathrm{~nm}$) with the occurrence of an isosbestic point at 324 nm . At the same time, the oxidation wave of PhS^{-}ions ($E_{1 / 2}=+0.16 \mathrm{~V}$) decreased to the benefit of the monoelectronic reduction wave ${ }^{21}$ of the nitrophenyl aryl sulfide ($E_{1 / 2}=-0.76 \mathrm{~V}$). The absorbance and the reduction currents of this product were the same as those of commercial samples of 4-nitrophenyl phenyl sulfide at equal concentrations.

Fig. 2 Evolution of UV-VIS spectra during the addition of p DNB to a solution of benzenethiolate ions $\left[\mathrm{PhS}^{-}\right]_{0}=1.15 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$. $[\mathrm{DNB}] /\left[\mathrm{PhS}^{-}\right]_{0}=0$ (1); 0.12 (2); 0.25 (3); 0.45 (4); 0.62 (5); 0.87 (6); 1.0 (7).

Fig. 3 Evolution of voltammograms during the reaction of p DNB with benzenethiolate ions. Same conditions as for Fig. 2. Rotating gold-disc electrode $\Omega=1000 \mathrm{rev} \mathrm{min}^{-1}$, diameter $=2 \mathrm{~mm} ; E$ vs. reference $\mathrm{Ag} / \mathrm{AgCl}, \mathrm{KCl}$ sat. in $\mathrm{DMA} / \mathrm{N}\left(\mathrm{Et}_{4} \mathrm{ClO}_{4} 0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$.

As in other aprotic solvents, ${ }^{22} \mathrm{NO}_{2}{ }^{-}$ions coming from the substitutions were detected by the growth of their oxidation wave ($E_{1 / 2} \approx 0.65 \mathrm{~V}$) [eqn. (12)].

$$
\begin{equation*}
2 \mathrm{NO}_{2}^{-}-\mathrm{e}^{-} \longrightarrow \mathrm{NO}_{3}^{-}+\mathrm{NO} \tag{12}
\end{equation*}
$$

$\mathrm{NO}_{2}{ }^{-}$concentrations can be estimated after calibrating with a solution of NaNO_{2} in DMA. At the end of reaction (11), dinitrobenzenes in excess were observed by their first monoelectronic reduction wave ${ }^{23}$ and by the addition of their own absorptions on spectra ${ }^{16}\left[p \mathrm{DNB}=E_{1 / 2}(\mathrm{R})=-0.45 \mathrm{~V}\right.$; $\lambda_{\text {max }}=262 \mathrm{~nm} ; \varepsilon_{\text {max }}=12700 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} ; o \mathrm{DNB}=$ $E_{1 / 2}(\mathrm{R})=-0.62 \mathrm{~V} ; \quad \lambda_{\text {max }}=262 \mathrm{~nm} ; \quad \varepsilon_{\text {max }}=5900 \mathrm{dm}^{3}$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1}$]. The experimental characteristics of nitrophenyl aryl monosulfides are reported in Table 3. These results were confirmed by typical synthesis of 4-nitrophenyl and 2nitrophenyl 4-methylphenyl sulfides $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$ (see Experimental section). The reactions were performed between thiolate ions 1a which were electrogenerated from thiocresol ($\approx 1 \mathrm{~g}$) and p DNB or o DNB. Nucleophilic displacements of the NO_{2} group gave the nitrophenyl sulfides at room temperature in good crude yields ($\geqslant 85 \%$).

Reactivity of $\mathrm{ArS}_{\mathrm{x}}{ }^{-}(\boldsymbol{x}=\mathbf{2}, \mathrm{Ar}=1,2)$ solutions with 1,2- and 1,4-dinitrobenzenes
Aryl disulfide ions 1b and $\mathbf{2 b}$ are predominant in $\operatorname{ArS}_{x}{ }^{-}(\bar{x}=2)$ solutions (Table 2). According to the Edwards-Davis ${ }^{24}$
approach, the nucleophilicity of $\mathrm{ArS}_{x}{ }^{-}$anions correlates with their reducing and basic properties. For polysulfide ions $\mathrm{S}_{\boldsymbol{x}}{ }^{2-}$ ($x=4,6,8$), these characteristics decrease upon lengthening the sulfur chain. ${ }^{25}$ However, $\mathrm{ArS}_{2}{ }^{-}$is a better nucleophilic agent towards alkyl halides than the corresponding thiolates. ${ }^{26}$ This enhanced reactivity was usually explained by the ' α-effect' observed when unshared electron pairs lie on an atom adjacent to the nucleophilic centre ${ }^{27}\left(\mathrm{ClO}^{-}, \mathrm{RO}_{2}^{-}\right.$, etc.). In that connection it should be noticed that $\mathrm{ArS}_{2}{ }^{-}$ions oxidize into $\mathrm{Ar}_{2} \mathrm{~S}_{2}$ faster than ArS^{-}species, ${ }^{17}$ according to the electrocatalytic process (3) $+(13)\left[\right.$ see $E_{1 / 2}(\mathrm{O})$ in Table 1].

$$
\begin{gather*}
\mathrm{ArS}^{-}+\frac{1}{8} \mathrm{~S}_{8} \longrightarrow \mathrm{ArS}_{2}^{-} \tag{3}\\
\mathrm{ArS}_{2}^{-}-\mathrm{e}^{-} \longrightarrow \frac{1}{2} \mathrm{Ar}_{2} \mathrm{~S}_{2}+\frac{1}{8} \mathrm{~S}_{8} \tag{13}
\end{gather*}
$$

Consequently, high proportions of unsymmetrical disulfides $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Ar}$ could be expected in mixtures resulting from substitutions of $\operatorname{ArS}_{x}{ }^{-}(\bar{x}=2)$ species on dinitrobenzenes. Surprisingly, the additions of $o \mathrm{DNB}$ or $p \mathrm{DNB}$ to these solutions immediately lead to the appearance of the red colours of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-} / \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}{ }^{-}$ions which are generated in great quantities, as will be shown below on the spectra.
A mechanism consistent with this observation implies the initial SNAr attack (14) of $\mathrm{ArS}_{2}{ }^{-}$ions on DNB.

$$
\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{2}+\mathrm{ArS}_{2}^{-} \xrightarrow{k_{2}} \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Ar}+\mathrm{NO}_{2}^{-}
$$

Reactions involving ionic scission of the sulfur-sulfur bond of unsymmetrical disulfides RSSR' by many nucleophilic species Y^{-}[reaction (15)] have been extensively reviewed. ${ }^{28}$

$$
\begin{equation*}
\mathbf{R S S R}^{\prime}+\mathbf{Y}^{-} \rightleftharpoons \mathbf{R S Y}+\mathbf{R}^{\prime} \mathbf{S}^{-} \tag{15}
\end{equation*}
$$

With $\mathrm{Y}^{-}=\mathrm{R}^{\prime \prime} \mathrm{S}^{-}$, disulfide interchanges [reaction (16)] may occur, the more stabilized thiolate ions $\mathrm{R}^{\prime} \mathrm{S}^{-}$being displaced. Eqn. (16) is analogous to a redox reaction. The reactivity of

$$
\begin{equation*}
\mathrm{RSSR}^{\prime}+\mathrm{R}^{\prime \prime} \mathrm{S}^{-} \longrightarrow \mathrm{RSSR}^{\prime \prime}+\mathrm{R}^{\prime} \mathrm{S}^{-} \tag{16}
\end{equation*}
$$

$\mathrm{ArS}_{2}{ }^{-}$ions on $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Ar}$ can be conceived from two competing pathways: (i) thiophilic substitution (17) of ArS_{2} ions releasing the thiolate $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}$;
$\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Ar}+\mathrm{ArS}_{2}{ }^{-} \rightleftharpoons \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}+\mathrm{Ar}_{2} \mathrm{~S}_{3}$
(ii) redox reaction between the two systems (13) and (18).

$$
\begin{gather*}
2 \mathrm{ArS}_{2}^{-}-2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Ar}_{2} \mathrm{~S}_{2}+\frac{1}{4} \mathrm{~S}_{8} \tag{13}\\
\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Ar}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}+\mathrm{ArS}^{-} \tag{18}
\end{gather*}
$$

Sulfur coming from (13) leads to $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}{ }^{-}$and $\mathrm{ArS}_{3}{ }^{-}$ ions in equilibrium, with a redox process thus summarized by eqns. (19) $+(9)$.

$$
\begin{align*}
\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Ar}+\mathrm{ArS}_{2}^{-} \rightleftharpoons & \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}^{-}+\mathrm{Ar}_{2} \mathrm{~S}_{2} \tag{19}\\
\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}^{-}+\mathrm{ArS}_{2}^{-} \stackrel{\mathrm{f}}{\rightleftharpoons} & \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}+\mathrm{ArS}_{3}^{-} \tag{9}
\end{align*}
$$

Side reactions of $\mathrm{ArS}_{3}{ }^{-}$ions present in $\mathrm{ArS}_{x}{ }^{-}$solutions can be neglected because of their weaker reactivity compared to those of ArS^{-}and $\mathrm{ArS}_{2}{ }^{-}$species: as an example, p DNB was

Table 3 Spectrophotometric and electrochemical characteristics of nitrophenyl aryl monosulfides in N, N-dimethylacetamide

Ar	$\lambda_{\text {max }} / \mathrm{nm}$	$\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$	$E_{1 / 2}(\mathrm{R}) / \mathrm{V}$	$i_{\mathbf{R}} / C^{a} / \mu \mathrm{A} \mathrm{dm}{ }^{3} \mathrm{~mol}^{-1}$
4-FC66 ${ }_{4}$	340	13000	-0.88	14.5
$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left\{4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right.$	345	14700	-0.80	15.0
Ph	340	12500	-0.76	14.5
$o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \quad 4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	372	3700	-0.90	13.5

${ }^{a} i_{\mathbf{R}} / C=a$; this experimental parameter will be used below.

Fig. 4 Evolution of voltammograms during the addition of o DNB to a solution $\left[\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}\right]_{0}=1.30 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}+8\left[\mathrm{~S}_{8}\right]_{0}=1.32 \times$ $10^{-3} \mathrm{~mol} \mathrm{dm}{ }^{-3} . o \mathrm{DNB} /\left[\mathrm{ArS}^{-}\right]_{0}=0(1) ; 0.14$ (2); 0.28 (3); $0.42(4) ; 0.56$ (5); 0.66 (6); 0.89 (7).

Fig. 5 Evolution of VIS spectra during the addition of o DNB to a solution $\left[\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}\right]_{0}=1.30 \times 10^{-3}+8\left[\mathrm{~S}_{8}\right]_{0}=1.32 \times 10^{-3} \mathrm{~mol}$ dm^{-3}. Same conditions as for Fig. 4.
added to an initial solution $\left[\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}\right]_{\mathrm{T}}{ }^{0}=1.57 \times 10^{-3}$ $\mathrm{mol} \mathrm{dm}{ }^{-3} ; 8\left[\mathrm{~S}_{8}\right]_{\mathrm{T}}{ }^{0}=3.05 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ of calculated composition with $K_{1}\left(\mathrm{CH}_{3}\right)$ and $K_{2}\left(\mathrm{CH}_{3}\right),\left[\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}\right]=$ $2.2 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3} ;\left[\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}{ }^{-}\right]=8.6 \times 10^{-5} \mathrm{~mol} \mathrm{dm}{ }^{-3}$; $\left[\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{3}{ }^{-}\right]=1.48 \times 10^{-3} \mathrm{~mol} \mathrm{dm}{ }^{-3}$. With $[p \mathrm{DNB}]_{0} /-$ $\left[\mathrm{ArS}^{-}\right]_{\mathrm{T}}{ }^{0}=0.38$, the increasing absorption of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}$ ions at 507 nm reached equilibrium after about 15 min . So reaction (14) of residual $\mathrm{ArS}_{2}{ }^{-}$ions rather than that of $\mathrm{ArS}_{3}{ }^{-}$ species probably points to the determining step of the substitution, the rate of which is lowered in the presence of excess sulfur.
The changes in voltammograms and spectra agree with the initial SNAr reaction (14) of $\mathrm{ArS}_{2}{ }^{-}$ions on DNB and the subsequent displacements (17) and (19) of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{x}{ }^{-}$ions ($x=1,2$) as shown for the example $o \mathrm{DNB}+4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{~S}_{x}{ }^{-}$ (Figs. 4 and 5): the oxidation current of $\mathrm{ArS}_{x}{ }^{-}$ions $\left[E_{1 / 2}(\mathrm{O})=\right.$ $-0.08 \mathrm{~V}]$ decreased with the appearance of the oxidation waves for both $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-} / \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}{ }^{-}$species ($E_{1 / 2}=$ +0.05 V) and $\mathrm{NO}_{2}{ }^{-}$ions ($E_{1 / 2} \approx+0.65 \mathrm{~V}$); at the same time
(curves 2-5, Fig. 4) the current increased at potentials where the S-S bond of $\mathrm{Ar}_{2} \mathrm{~S}_{2}$-and probably that of $\mathrm{Ar}_{2} \mathrm{~S}_{3}$-reduce $\left(E_{1 / 2} \approx-1.20 \mathrm{~V}\right)$. The cathodic wave of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SAr}\left(E_{1 / 2}=\right.$ -0.88 V) also developed. However the electrolysis of the solution at controlled potential ($E_{1 / 2} \approx-1.0 \mathrm{~V}$) exhibits a poor electric yield because of the fast reoxidation of the unstable radical-anion $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SAr}^{-},{ }^{21}$ and the visible absorption of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}\left(\lambda_{\max }=502 \mathrm{~nm}\right)$ increased; a part of the limiting current can thus be assigned to the two electron reduction of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Ar}$ at intermediate potentials of $\left(\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}\right)_{2}$ ($E_{1 / 2}=-0.67 \mathrm{~V}$) and $\mathrm{Ar}_{2} \mathrm{~S}_{2}\left(E_{1 / 2}=-1.20 \mathrm{~V}\right.$) (Table 1). In spectra, the advancement of reactions (17) and (19) on the product of substitution (14) is shown by the increase of maximal absorptions of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}\left(\lambda_{\max }=502 \mathrm{~nm}\right)$ and $\mathrm{NO}_{2^{-}}$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}{ }^{-}$ions ($\lambda_{\text {max }}=681 \mathrm{~nm}$). When the consumption of $\mathrm{ArS}_{2}{ }^{-}$ions approaches completion (curve 5, Fig. 5) an enhanced formation of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}{ }^{-}$is observed at the expense of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}$, corresponding to the backward displacement of equilibrium (9). This evolution was all the more noticeable as formation of $\mathrm{ArS}_{3}{ }^{-}$ions (K_{2}) was favoured with respect to that of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}^{-}\left(K_{1}\right)$ in agreement with the relative values of constants $K_{1}\left(o \mathrm{NO}_{2}\right) \geqslant K_{1}\left(p \mathrm{NO}_{2}\right) ; \quad K_{2}\left(\mathrm{CH}_{3}\right)>$ $K_{1}\left(o \mathrm{NO}_{2}\right)>K_{2}(\mathrm{~F})$.
Contrary to $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{x}^{-}(x=1,2)$ ions, $o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}$ and $o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}{ }^{-}$ions can react with o DNB according to second-order reactions (20) and (21), as was reported in a

$$
\begin{array}{r}
\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{2}+o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-} \xrightarrow{k_{3}} \\
\left(o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{~S}+\mathrm{NO}_{2}^{-} \tag{20}
\end{array}
$$

$$
\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{2}+o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}-\xrightarrow[\left(o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}\right)_{2}]{k_{4}}+\mathrm{NO}_{2}^{-}
$$

previous paper, ${ }^{16}$ with $k_{3}=0.83$ and $k_{4}=22 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ In this way, with further addition of o DNB after the consumption of $\mathrm{ArS}_{x}{ }^{-}$ions, the characteristic absorptions of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-} \quad\left(\lambda_{\text {max }}=502 \mathrm{~nm}\right)$ and especially that of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}^{-}\left(\lambda_{\text {max }}=681 \mathrm{~nm}\right)$ decreased, $\left(o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}\right)_{2}$ now being detected on the voltammograms by its reduction wave ($E_{1 / 2}=-0.67 \mathrm{~V}$: curves 6-7 on Figs. 4 and 5).
In the course of the reaction $o \mathrm{DNB}+\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{x}{ }^{-}$no unsymmetrical $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{x} \mathrm{Ar}(x=1,2)$ compounds were detected on $i=f(E)$ recordings and all the concentrations of anionic species were easily calculated from spectrophotometric parameters (Table 1, 2- $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}, 2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}^{-}$) and oxidation currents $\left(\mathrm{ArS}_{x}{ }^{-}, \mathrm{NO}_{2}{ }^{-}\right.$). Fig. 6 illustrates their evolution as a function of $y=[o \mathrm{DNB}] /\left[\mathrm{ArS}_{x}^{-}\right]_{0}:(i)$ as long as y remains lower than $\approx 1 / 3$, the nearly quantitative reaction (19) and reaction (9f) entail the observed balance (22) (in-

$$
\begin{align*}
\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{2}+3 \mathrm{ArS}_{2}^{-} \\
o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}+\mathrm{ArS}_{3}^{-} \tag{22}
\end{align*}+\mathrm{Ar}_{2} \mathrm{~S}_{2}+\mathrm{NO}_{2}^{-}
$$

creasing $\left[\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}\right]$); (ii) for $0.5>y>0.33, \mathrm{ArS}_{3}{ }^{-}$ions release reactive $\mathrm{ArS}_{2}{ }^{-}$species by reaction (9b) (increasing $\left[\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}^{-}\right]$at the expense of $\left[\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}\right]$); (iii) for the values $y>0.5, o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{x}{ }^{-}(x=1,2)$ slowly displace

Fig. 6 Evolution of $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{x}^{-}(\bar{x}=2)$ (1), $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}$(2), $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}^{-}$(3), NO_{2}^{-}(4) concentrations during the addition of o DNB to a solution $\left[\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}\right]_{0}=3.14 \times 10^{-3}+8\left[\mathrm{~S}_{8}\right]_{0}=$ $3.17 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{NO}_{2}{ }^{-}$ions from o DNB according to eqns. (20) and (21). The reaction of $o \mathrm{DNB}$ with $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}{ }^{-}$ions thus agrees with the prevailing balance (23) of eqns. $[(14)+(19)+(21)]$.

$$
2 \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NO}_{2}\right)_{2}+\underset{\left(o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}\right)_{2}}{2 \mathrm{ArS}_{2}^{-}}+\mathrm{Ar}_{2} \mathrm{~S}_{2}+2 \mathrm{NO}_{2}^{-}
$$

The proportions of molecular products $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SAr}$, $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Ar}, \mathrm{Ar}_{2} \mathrm{~S}_{y}(y=2,3)$ resulting from reactions $\mathrm{DNB}+\mathrm{ArS}_{x}^{-}(\bar{x}=2, \mathrm{Ar}=1,2)$ when $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{x}{ }^{-}$concentrations reached a maximal value were calculated by solving the set of eqns. (24) $-(26), i_{R}$ is the total limiting current of the

$$
\begin{array}{r}
i_{\mathrm{R}}=a\left[\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SAr}\right]+2 a\left[\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Ar}\right] \\
{[\mathrm{DNB}]_{\mathrm{T}}=\left[\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SAr}\right]+\left[\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Ar}\right]+} \\
\sum_{y}\left[\mathrm{Ar}_{2} \mathrm{~S}_{y}\right] \\
\sum_{y}\left[\mathrm{Ar}_{2} \mathrm{~S}_{y}\right]=\left[\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}\right]+\left[\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}^{-}\right] \tag{26}
\end{array}
$$

reductions of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SAr}$ (monoelectronic process, $\bar{a}=i / C$ parameter $\approx 14.5 \mu \mathrm{~A} \mathrm{dm}{ }^{3} \mathrm{~mol}^{-1}$ from average experimental values in Table 3) and $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Ar}$ (two electron process, $2 \bar{a}$ coefficient). The maximal absorbances of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}\left(\lambda_{o}=\right.$ $\left.502 \mathrm{~nm}, \lambda_{p}=507 \mathrm{~nm}\right)$, and of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}{ }^{-}\left(\lambda_{\mathrm{o}}=681 \mathrm{~nm}\right.$, $\left.\lambda_{\mathrm{p}}=600 \mathrm{~nm}\right)$ give $\left[\mathrm{Ar}_{2} \mathrm{~S}_{2}\right]+\left[\mathrm{Ar}_{2} \mathrm{~S}_{3}\right] .\left[\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}\right]$and $\left[\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}{ }^{-}\right]_{\mathrm{T}}$ cannot be ranked respectively with $\left[\mathrm{Ar}_{2} \mathrm{~S}_{3}\right.$] and $\left[\mathrm{Ar}_{2} \mathrm{~S}_{2}\right]$ as expected from eqns. (17) and (19) because, except for the base $o \mathrm{DNB}+\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}$, the simultaneous formation of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SAr}$ and $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Ar}$ observed and reaction (27) of ArS^{-}with $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Ar}$ could also be assumed.

$$
\begin{equation*}
\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Ar}+\mathrm{ArS}^{-} \longrightarrow \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}+\mathrm{Ar}_{2} \mathrm{~S}_{2} \tag{27}
\end{equation*}
$$

Table 4 summarizes the compositions of the molecular mixtures linked to initial concentrations in $\left[\mathrm{ArS}_{x}{ }^{-}\right]_{0}$ and $y=$ $[\mathrm{DNB}]_{0} /\left[\mathrm{ArS}^{-}\right]_{\mathrm{T}}{ }^{0}$.
o DNB and p DNB were added to $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{x}{ }^{-}$solutions on a preparative scale at y values close to those of Table 4 (see Experimental section). The proportions in mixtures of products which are reported in Table 5 are in rather good agreement with those calculated in dilute solutions.

The ratios k_{2} / k_{1} pointing out the comparative rates for SNAr reactions of $\mathrm{ArS}_{2}{ }^{-}$and ArS^{-}ions are probably more important with o DNB than p DNB because amounts of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SAr}$ species remain low $\left(\mathrm{Ar}=\mathrm{FC}_{6} \mathrm{H}_{4}\right)$ or undetected ($\mathrm{Ar}=$ $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$) in the first case. S-Nucleophilic and reductive properties of $\mathrm{ArS}_{2}^{-} / \mathrm{ArS}^{-}$ions $\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}>\mathrm{FC}_{6} \mathrm{H}_{4}\right)$ depicted
by the compared proportions of products of reactions (17) and (19) agree with the greater basicity of 4-methylbenzenethiolate with respect to those of 4-halobenzenethiolates in water and DMSO. ${ }^{29}$

To conclude, a NO_{2} group is readily displaced at room temperature by aryl disulfide ions and monosulfide ions from 1,2- and 1,4-dinitrobenzenes in a dipolar aprotic medium such as N, N-dimethylacetamide. Thiolates afford nitrophenyl aryl sulfides in almost quantitative yields. With aryl disulfide ions, unsymmetrical diaryl disulfides which are formed in the initial substitution further partly react with $\mathrm{ArS}_{2}{ }^{-}$species by S nucleophilic and redox processes giving appreciable amounts of symmetrical diaryl di- and tri-sulfides.

Other displacements of NO_{2} groups involving substitutions of aryl and alkyl disulfide ions on mononitroaromatic compounds are presently in progress in our laboratory.

Experimental

Materials and equipment

1,2- and 1,4-dinitrobenzenes, benzenethiol, 4-fluoro- and 4-methyl-benzenethiol and 4-nitrophenyl phenyl sulfide of commercial origin (purity $>98 \%$) were used as received. The purification of N, N-dimethylacetamide and its storage after addition of $\mathrm{N}(\mathrm{Et}){ }_{4} \mathrm{ClO}_{4} \quad\left(0.1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ as supporting electrolyte have been reported elsewhere. ${ }^{30}$ Electrochemical and spectrophotometric equipment, the flow-through cell and the two-compartment preparative cell were the same as previously described. ${ }^{30}$ All the potentials were referenced to $\mathrm{Ag} / \mathrm{AgCl}, \mathrm{KCl}$ saturated in $\mathrm{DMA}-\mathrm{N}(\mathrm{Et})_{4} \mathrm{ClO}_{4}\left(0.1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$. The synthesized products and mixtures were analysed by ${ }^{1} \mathrm{H}$ (200.132 MHz) and ${ }^{13} \mathrm{C}$ NMR spectroscopy (50.323 MHz) (Brucker AC 200 spectrometer, CDCl_{3} as solvent, chemical shifts in ppm relative to $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard, J values in Hz) and mass spectrometry (Hewlett-Packard 5989 A , EI 70 eV).

Synthesis

The reactions of 4-methylbenzenethiolate ions, alone or in the presence of sulfur, with $p \mathrm{DNB}$ or $o \mathrm{DNB}$ were carried out according to the same procedure at the preparative scale: $1-2 \mathrm{~g}$ (see later) of p-thiocresol ($4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SH}$) were dissolved in 120 cm^{3} of the catholyte $\mathrm{N}(E t)_{4} \mathrm{ClO}_{4}\left(0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in DMA). The electroreductions of ArSH into ArS^{-}ions at controlled potential $(-0.9>E>-1.3 \mathrm{~V})$ at a large gold grid electrode were performed within 2 h . When used, $\mathrm{ArS}_{x}{ }^{-}(\vec{x}=2)$ ions were obtained by addition of known quantities of solid sulfur into the cathode compartment at the end of the electrolysis. Sulfur dissolved by heating at $40^{\circ} \mathrm{C}$ during 10 min . oDNB or p DNB were also added in the solid state in slight deficit with respect to ArS^{-}concentrations, or y values for $\mathrm{ArS}_{2}{ }^{-}$solutions (see Table 4). In the latter case the red colour of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{x}{ }^{-}$ ($x=1,2$) ions immediately appeared. After heating (10 min , $40^{\circ} \mathrm{C}$), the mixtures were diluted wih 4 vol . of 3% aq. NaOH before extraction with diethyl ether in order to eliminate the residual ArSH , ionic species $\left[\mathrm{NO}_{2} \mathrm{PhS}_{x}{ }^{-}\right.$and $\mathrm{NO}_{2}{ }^{-}$ions, $\left.\mathrm{N}(\mathrm{Et})_{4} \mathrm{ClO}_{4}\right]$ and DMA which is partially soluble in ether. The organic phase was washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$.

The crude compounds, o - and $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$, were recrystallized from methanol. The resulting mixtures of the reactions, $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}{ }^{-}+o$ - or p-DNB, were passed through a silica gel column with hexane-methylene chloride, $85: 15$ as eluent. In this way, for $p \mathrm{DNB}$ two fractions (A, B) of products were separated before analysis.

Reaction of 4 -methylbenzenethiolate (1a) and pDNB. p Thiocresol: $0.974 \mathrm{~g}(7.68 \mathrm{mmol}) ; p \mathrm{DNB}: 1.05 \mathrm{~g},(6.25 \mathrm{mmol})$. Product: p-nitrophenyl p-tolyl sulfide ($1.19 \mathrm{~g}, 77 \%$), mp 79$80^{\circ} \mathrm{C}$ (lit., ${ }^{31} 78-80^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}} 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.1-7.5(6 \mathrm{H}, \mathrm{m})$ and $8.04(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 6.5) ; \delta_{\mathrm{C}} 21.2,123.8(2 \mathrm{C}), 125.9(2 \mathrm{C})$,

Table 4 Composition $(\mathrm{mol} \% \pm 10)$ of the products of reactions $\mathrm{DNB}+\mathrm{ArS}_{x}-$ ions $(\bar{x}=2)$ from spectroelectrochemical studies

$\mathrm{Ar} / \mathrm{DNB}$	$4-\mathrm{FC}_{6} \mathrm{H}_{4} / o \mathrm{DNB}$	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} / o \mathrm{DNB}$	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} / p \mathrm{DNB}$	$4-\mathrm{FC}_{6} \mathrm{H}_{4} / p \mathrm{DNB}$
$\left[\mathrm{ArS}^{-}\right]_{0}{ }^{\mathrm{T}} / \mathrm{mmol} \mathrm{dm}^{-3}$	1.30	3.14	1.25	1.37
$8\left[\mathrm{~S}_{8}\right]_{0} / \mathrm{mmol} \mathrm{dm}^{-3}$	1.32	3.17	1.18	1.28
y^{a}	$0.6(2)$	$0.5(0)$	$0.7(2)$	$0.8(0)$
$\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SAr}(\%)$	5	-	15	40
$\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Ar}(\%)$	20	-	50	40
${\Sigma \mathrm{Ar}_{2} \mathrm{~S}_{y}(\%)} \%$	75	100^{b}		

${ }^{a} y$ Values at maximum in absorption of $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{x}{ }^{-}$ions. ${ }^{b} \% \mathrm{Ar}_{2} \mathrm{~S}_{2} \approx 70 ; \mathrm{Ar}_{2} \mathrm{~S}_{3} \approx 30$.
Table 5 Composition ($\mathrm{mol} \% \pm 5$) of the products of reactions 4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{x}^{-}(\bar{x}=2)+o$ - or p-DNB at the preparative scale

| Ar/DNB | $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SAr}(\%)$ | $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{Ar}(\%)$ | $\mathrm{Ar}_{2} \mathrm{~S}_{2}(\%)$ | $\mathrm{Ar}_{2} \mathrm{~S}_{3}(\%)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} / o \mathrm{DNB}$ | - | - | 76 | 23 |
| $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} / p \mathrm{DNB}$ | 36 | 9 | 22 | 33 |

126.7, 130.7 (2 C), 134.9 (2 C), 140.1, 145.3 and 149.3 (δ_{H} and δ_{C} in agreement with ref. 32); $m / z 245\left(\mathrm{M}^{+}, 100 \%\right)$.
Reaction of 1a and o DNB. p-Thiocresol: $0.950 \mathrm{~g}(7.5 \mathrm{mmol})$; o DNB: $1.07 \mathrm{~g}(6.36 \mathrm{mmol})$. Product: o-nitrophenyl p-tolyl sulfide ($1.03 \mathrm{~g}, 66 \%$), $\mathrm{mp} 88-89^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 2.43(3 \mathrm{H}, \mathrm{s}), 6.83(1 \mathrm{H}$, dd, $J 8,1$), $7.18(1 \mathrm{H}, \mathrm{m}), 7.28(2 \mathrm{H}, \mathrm{br}$ d, $J 8), 7.3(1 \mathrm{H}, \mathrm{m}), 7.46$ ($2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8$) and $8.22\left(1 \mathrm{H}, \mathrm{dd}, J 8,1.2\right.$); $\delta_{\mathrm{C}} 21.4,124.8,125.7$, 127.2, 128.1, 131.0 (2 C), 133.5, 136.0 (2 C), 140.1, 140.5 and 144.7; $m / z 245\left(\mathrm{M}^{+}, 22 \%\right), 197(13), 184$ (12), 180 (100), 166 (10), 152 (11), 139 (13) and 91 (12).
Reaction of 4-methylbenzenedisulfanide (1b) ($\overline{\boldsymbol{x}}=2$) and oDNB. p-Thiocresol: $1.90 \mathrm{~g}(15.0 \mathrm{mmol}) ; \mathrm{S}_{8}: 0.44 \mathrm{~g}(13.7 \mathrm{mmol}$ S); o DNB: $1.00 \mathrm{~g}(5.95 \mathrm{mmol})$. Products: from $\delta_{\mathrm{H}}(6 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ di-p-tolyl disulfide (76%); di- p-tolyl trisulfide (23%). Di- p-tolyl disulfide: $\delta_{\mathrm{H}} 2.29(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.07(4 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8)$ and 7.34 (4 H , br d, J 8); $\delta_{\mathrm{C}} 20.9$ (2 C), 128.3 (4 C), 129.6 (4 C), 133.7 (2C) and 137.2 (2 C); $m / z 246\left(\mathrm{M}^{+}, 51 \%\right.$), 123 (100), 91 (18), 79 (39), 77 (42), 69 (16), 65 (13), 63 (14), 51 (14), 45 (76) and 39 (27). Di-p-tolyl trisulfide: $\delta_{\mathrm{H}} 2.32(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.07(4 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8)$ and $7.38(4 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8) ; \delta_{\mathrm{C}} 21.0(2 \mathrm{C}), 129.8(4 \mathrm{C}), 130.9(4 \mathrm{C})$, $132.8(2 \mathrm{C})$ and $138.5(2 \mathrm{C}) ; m / z 278\left(\mathrm{M}^{+}, 84 \%\right), 214(28), 180$ (11), 155 (13), 121 (10), 91 (100), 77 (20), 65 (20) and 45 (22).

Reaction of 1b $(\bar{x}=2)$ and p DNB. p-Thiocresol: 1.84 g $(14.5 \mathrm{mmol}) ; \mathrm{S}_{8}: 0.44 \mathrm{~g}(13.7 \mathrm{mmol} \mathrm{S}) ; p$ DNB: $1.58 \mathrm{~g}(9.4$ mmol). Products: fraction A $450 \mathrm{mg}, R_{\mathrm{f}}$ (hexane-methylene chloride: $85: 15) 0.55$; from $\delta_{\mathrm{H}}\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ di- p-tolyl disulfide (40%); di-p-tolyl trisulfide (59%). Fraction B $349 \mathrm{mg}, R_{\mathrm{f}}$ 0.24 ; from MS and $\delta_{\mathrm{H}}(3 \mathrm{H}, \mathrm{s}), p$-nitrophenyl p-tolyl sulfide (77%), p-nitrophenyl p-tolyl disulfide ($\approx 20 \%$). Preceding ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS characteristics, and for p-nitrophenyl p-tolyl disulfide, $\delta_{\mathrm{H}} 2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; m / z 277\left(\mathrm{M}^{+}, 32 \%\right)$ and 123 (100).

References

1 J. F. Bunnett and W. D. Merritt, J. Am. Chem. Soc., 1957, 79, 5967.
2 J. B. Baumann, J. Org. Chem., 1971, 36, 396.
3 (a) J. R. Beck, J. Org. Chem., 1972, 37, 3224; (b) J. R. Beck, R. L.
Sobczak, R. G. Suhr and J. A. Yahner, J. Org. Chem., 1974, 39, 1839.
4 N. Kornblum, L. Cheng, R. C. Kerber, M. M. Kestner, B. N. Newton, H. W. Pinnick, R. G. Smith and P. A. Wade, J. Org. Chem., 1976, 41, 1560.
5 G. Bartoli and P. E. Todesco, Acc. Chem. Res., 1977, 10, 125.
6 (a) J. R. Beck and J. A. Yahner, J. Org. Chem., 1978, 43, 2048; (b) 2052.

7 J. R. Beck, Tetrahedron, 1978, 34, 2057.
8 P. Cogoli, L. Testaferri, M. Tingoli and M. Tiecco, J. Org. Chem., 1979, 44, 2636.
9 F. Benedetti, D. R. Marshall, C. J. M. Stirling and J. L. Leng, J. Chem. Soc., Chem. Commun., 1982, 918.

10 F. Terrier, Nucleophilic Aromatic Displacement (XI), series: Organic

Nitro Chemistry, VCH, Weinheim, 1991, p. 1-36 and refs. cited therein.
11 (a) J. T. B. Ferreira, F. Simonelli and J. V. Comasseto, Synth. Commun., 1986, 16, 1335; (b) W. P. Reeves, T. C. Bothwell, J. A. Rudis and J. McClusky, Synth. Commun., 1982, 12, 1071.

12 (a) D. W. Robinson, M. Abdel-Halim, M. Inoue, M. Kimura and D. O. Cowan, J. Chem. Phys., 1989, 90, 3427; (b) M. Barzoukas, D. Josse, J. Zyss, P. Gordon and J. O. Morley, Chem. Phys., 1989, 139, 359.
13 E. Campaigne, J. Tsurugi and W. W. Meyer, J. Org. Chem., 1961, 26, 2486.
14 R. Sato, S. Chiba, N. Saito, M. Sato and M. Saito, Phosphorus Sulfur, 1984, 19, 205.
15 L. Benati, P. C. Montevecchi and P. Spagnolo, Tetrahedron Lett., 1986, 27, 1739.
16 G. Bosser, M. Benaïchouche, R. Coudert and J. Paris, New J. Chem., 1994, 18, 511.
17 M. Benaïchouche, G. Bosser, J. Paris, J. Auger and V. Plichon, J. Chem. Soc., Perkin Trans. 2, 1990, 31.

18 (a) F. Magno, G. Bontempelli and G. Pilloni, J. Electroanal. Chem., 1971, 30, 375; (b) J. R. Bradbury, A. F. Masters, A. C. McDonell, A. A. Brunette, A. M. Bond and A. G. Wedd, J. Am. Chem. Soc., 1981, 103, 1959.
19 G. Bosser, J. Paris and V. Plichon, J. Chem. Soc., Chem. Commun., 1988, 720
20 (a) A. J. Parker and N. Kharasch, Chem. Rev., 1959, 59, 583; (b) A. J. Parker and N. Kharash, J. Am. Chem. Soc., 1960, 82, 3071.

21 G. Capobianco, G. Farnia, M. G. Severin and E. Vianello, J. Electroanal. Chem., 1984, 165, 251 and refs. cited therein.

22 (a) G. Bontempelli, G. A. Mazochin and F. Magno, J. Electroanal. Chem., 1974, 55, 101; (b) A. Boughriet, J. C. Fisher, G. Leman and M. Wartel, Bull. Soc. Chim. Fr., 1985, 1, 8.

23 H. Bock and V. Lechner-Knoblauch, Z. Naturforsch, Teil B, 1985, 40, 1463 and refs. cited therein.
24 (a) J. O. Edwards, J. Am. Chem. Soc., 1956, 78, 1819; (b) R. E. Davis, Survey of Progress in Chemistry, ed. A. Scott, vol. 2, Academic Press, New York, 1964, p. 189.
25 J. Paris and V. Plichon, Electrochim. Acta, 1982, 10, 1501.
26 M. Benaïchouche, G. Bosser, J. Paris and V. Plichon, J. Chem. Soc., Perkin Trans. 2, 1990, 1421.
27 J. E. Dixon and T. C. Bruice, J. Am. Chem. Soc., 1972, 94, 2052.
28 S. Oae, Organic Chemistry of Sulfur: Structure and Mechanism, CRC Press, Ann Arbor, 1991, pp. 119-134 and refs. cited therein.
29 F. G. Bordwell and D. L. Hughes, J. Org. Chem., 1982, 47, 3224.
30 (a) J. Paris and V. Plichon, Electrochim. Acta, 1981, 26, 1823; (b) G. Bosser and J. Paris, J. Chem. Soc., Perkin Trans. 2, 1992, 2057.

31 K. A. Durkin, R. F. Langler and N. A. Morrison, Can. J. Chem., 1988, 66, 3070.
32 R. Chandrasekaran, S. Perumal and D. A. Wilson, Magn. Reson. Chem., 1987, 25, 1001.

